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Theory of flame-front stability 

By WIKTOR ECKHAUS 
Massachusetts Institute of Technologyt 

(Received 25 July 1960) 

A study of the stability of a plane laminar flame front is made. The effects of 
disturbances on the flame structure are investigated by a small perturbations 
technique, taking into account the mechanism of diffusion, heat conduction and 
unsteady combustion. By use of a simplified model of the flame structure, and 
the assumption that the flame thickness is small compared with the wavelength 
of disturbances, a formula for the perturbation of the flame propagation velocity 
is derived. The flame velocity is shown to  depend on the curvature of the flame, 
and on the rates of change of fluid velocities at the flame boundary. From stability 
analysis it then follows that properties of the mixture, as expressed in terms of the 
coefficient of heat conductivity and various coefficients of diffusion, play an 
important role in determining the stability picture. For some estimated values of 
these parameters the theoretical results are shown to agree with the general trend 
of the experimentally observed behaviour. 

1. Introduction 
The problem of stability of a plane flame front in a laminar flow is, from the 

theoretical point of view, a problem of unsteady dynamics of a fluid in which 
heat conduction, multioomponent diffusion and complex reactions resulting in 
heat release take place. A body of experimental evidence on the behaviour of 
distorted flame fronts is at present available; the theoretical investigations, 
however, have so far failed to produce a satisfactory explanation of the observed 
phenomena. The situation is in one respect a very puzzling one: while the experi- 
ments show a well-defined behaviour, which seems to be caused by some dominant 
mechanism, the theory finds it difficult to pin-point such a dominant mechanism. 
To be more specific let us now briefly outline the problem and summarize the 
available experimental and theoretical evidence. 

We consider a plane flame front which propagates into a combustible mixture 
with a velocity uo, the flame propagation velocity. From the point of view of an 
observer stationed at the moving flame front (figure l), by approximation three 
regions of flow can be distinguished: the upstream region, occupied by the com- 
bustible mixture, which enters the flame with velocity u,; the downstream region, 
occupied by products of combustion, which leave the flame with a different 
velocity uf (and at a different temperature); and the flame region itself. In  the 
upstream and downstream regions, heat conductivity, diffusion and mctions 
can be neglected; while, due to low velocities (u, of the order of magnitude of 

f Now at  the Institut Henri Poincar6, P&. 
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30 to 100cm/sec), compressibility can be neglected as well. Thus, these two 
regions can be considered to be occupied by ideal fluid. In the flame region, which 
is usually very thin (of the order of magnitude of a fraction of a millimetre), 
multicomponent diffusion, heat conductivity and reactions resulting in heat 
release must be taken into account. 

I’ 

FIGURE 1 

Now consider the flame front to be initially E ightly I istorted. The resulting 
stability problem was first treated by Landau in 1944 (see Landau & Lifshitz 
1953; Emmons 1958). Taking disturbances harmonic in y and linearizing the 
equations of motion, one can easily find the perturbation fields in the upstream 
and downstream region. For most observable disturbances the ratio of wave- 
length to flame thickness will be very large, so that by approximation the flame 
front may be treated as a discontinuity in the field of fluid. This leads to a simple 
formulation of the stability problem, provided that a condition is postulated for 
the propagation velocity of the disturbed flame front. Landau assumed that the 
disturbances have negligible effect on the flame propagation velocity, hence 
that, even in disturbed conditions, the normal component of the velocity of 
fluid relative to the flame front is uo. He then found the flame to be unstable for 
all wavelengths. 

Let us now turn to experimental evidence. Markstein (1951) studied plane 
flame fronts for a series of hydrocarbon fuels pre-mixed with air. He found in a 
great many cases that the flame has a cellular structure: the plane flame front 
breaks down into many small cells which remain in the plane of the original flame, 
but which dance around and oscillate. Varying the composition of the mixture, 
Markstein was able to establish beyond any doubt that almost all fuels produced 
cellular structure when the mixture was rich, but that no breakdown occurred, 
and the flame remained plane, when the mixture was lean.? 

t The only exception to the rule wm produced by methane flames, for which the be- 
haviour waa reversed. Of the fuels that were tested, methane happens to be the only 
one that is considerably lighter than the oxidizer. 

6 Fluid Mech. 10 
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If the cellular structure of the flame is interpreted as a result of instability, the 
conclusion that, for a wide range of fuels, rich mixtures are unstable while lean 
mixtures are stable must be drawn. The transition point from unstable to stable 
situations was established by Markstein to be exactly at the stochiometric com- 
position. 

Hence i t  appears that Landau’s theory must be modified, so as to take into 
account the effects of the disturbances on the flame propagation velocity. Mark- 
stein proposed that the variation of the flame velocity should be proportional to 
the ratio of flame thickness to the local radius of curvature of the flame. The 
proportionality constant remains undetermined in Markstein’s analysis and, 
depending on its value, the effect is stabilizing or destabilizing. 

Further theoretical understanding of the flame stability problem can be 
achieved only if the theory of flame propagation is extended to  unsteady and 
slightly curved flames. But, to  date, even the problem of one-dimensional steady- 
state flame propagation has not been truly solved. The great complexity of the 
phenomena that take place inside the flame zone, together with partial ignorance 
about the chemistry of reactions, make the problem very difficult. Nevertheless, 
based on various assumptions, various theories are available, and, in the words 
of Spalding (1955), ‘no single theory fits all the facts but all fit some of the 
facts remarkably well’. So there is some hope that, by making reasonable 
assumptions in the present case, a reasonable theory can be produced. This paper 
presents an attempt in this direction. 

The theory is based on a highly idealized model of the flame structure, which 
may justifiably be criticized far over-simplification. In  many respects the 
present theory can be described as the simplest possible flame perturbation 
theory, a counterpart of the stationary Mallard-LeChatelier formula (see 
Emmons 1958). 

As compared with Markstein’s hypothesis, the theory shows that the perturba- 
tion of the flame velocity is not only proportional to the curvature of the flame, 
but also to the rate of change of the tangential fluid velocities along the flame, 
and to the relative acceleration of the flame. The proportionality constants 
follow from the theory, and are expressed in terms of the physical properties of 
the burning mixture, such as the coefficients of heat conductivity and various 
coefficients of diffusion. Stability analysis then shows that rich and lean mixtures 
indeed behave differently, and that a situation can arise in which the lean mixture 
is stable for a range of wavelengths, while the rich mixture is unstable. 

2. The model of the flame structure 
In  the present work we adopt the concept of thermal flame propagation. This 

permits us to subdivide the flame zone by approximation into two regions: a 
pre-heat region, where the temperature rises mainly because of heat conduction 
and where the rates of reaction are low; and a burning region, where the rates of 
reaction are high and where most of the actual combustion takes place (figwe 2 ) .  

Although little is known about the actual rates of reaction for any complex 
fuel-oxygen mixture, there are good reasons to assume that the rates of reaction 
rise very rapidly with temperature. We shall presently assume that the depen- 
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dence on temperature is so strong that in the pre-heat zone, 6 < 0, rates of reac- 
tion can be neglected altogether. Moreover, we shall assume that in the burning 
zone the rates of reactions are very high, so that this zone can be thought to be 
very thin, and the rate of reaction can be approximated by a constant inde- 
pendent of the temperature. The boundary between the two zones is given by the 
fictitious ignition temperature Ti which is assumed to be very close to the final 

T 

flame temperature Tf. Let us now put these assumptions in a more mathematical 
form. As we shall see very shortly, the parameter that governs the heat conduc- 
tion in the pre-heat zone is 

5 knu 
2 h '  

7 = -_- 

where Ic is the Boltzmann constant, n the number density of thegas, u thevelocity, 
and h the coefficient of heat conductivity. The inverse of r measures the width 
of the pre-heat zone. 

Similarly, if we denote the constant rate of reaction in the burning zone by a*, 
the inverse of the quantity a* 

- 

Uf 

measures the width of the burning zone. The fundamental assumption of the 
present model is a* 

~ 9 1. 
Uf 

So far we have considered the flame as a temperature wave. This, of course, is 
only part of the story. The gas that flows through the flame is a mixture of many 
species. In  the pre-heat zone we have predominantly fuel and oxidizer; in the 
burning zone these species disappear partially or completely and are replaced by 
products of combustion. There are thus large concentration gradients, and 

6-2 
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consequently appreciable diffusion. Products of combustion diffuse into the pre- 
heat zone, while fuel and oxidizer diffuse into the burning zone. 

Consider now a slightly curved flame front, which moves with respect to some 
reference axis (its original plane position) with velocity i,, and let the fluid 
velocities relative to the flame front vary with time. In  a co-ordinate system 6 , ~  
attached to the flame front, the flame structure may be assumed to be essentially 
the one-dimensional stationary flame structure, but with some small perturba- 
tions. Let us attempt a qualitative description of these perturbations. 

FIGURE 3 

The heat conduction is affected by the fact that the flame is no longer plane 
(and thus one-dimensional) but curved. This is the effect proposed by Markstein; 
however, there are others too. The heat conduction is also affected by convection 
due to the perturbation velocities. The result is that locally along the flame the 
amount of heat needed to raise the temperature in the pre-heat zone to the ignition 
point is different from that needed in the undisturbed situation. 

Next we consider the diffusion processes. In  the one-dimensional situation 
there is a distribution of the relative densities of the various species along the 
6-axis. By the perturbation velocities the species will be convected and redis- 
tributed, while there will also be diffusion in the direction tangential to the flame 
front, due to the flame curvature. The net effect of these processes will be that, 
as we proceed along the 6-axis, the ratio of fuel to oxidizer of the mixture which 
enters the preheat zone, and that of the mixture which enters the burning zone, 
will no longer be the same. There will be an effective change of composition and 
thus a perturbation of the amount of heat produced by combustion in the burning 
zone. 

Some of these effects can easily be put in a mathematical form by very simple 
reasoning (see Eckhaus 1959). However, in order to  obtain all the effects cor- 
rectly, one must proceed from the system of equations that describes the flame 
structure, develop the perturbation equations and construct their solutions. 
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3. The system of equations describing the flame structure? 
We define a Cartesian co-ordinate system x - y, in which the y-axis coincides 

with the unperturbed position of the flame, and consider the flow of a mixture 
of species, in which diffusion, heat conduction and reactions take place. Gravi- 
tational, viscous and acoustic effects, however, are neglected. The equations 
that we shall use are adopted from Hirschfelder, Curtiss & Bird (1954) where 
detailed derivations are given. 

To begin with, we have the hydrodynamic equations of continuity and 
momentum 

a a 
at ax aY 2 +- (pu) +- (pv) = 0, 

D~ l a p  DV l a p  
Dt pax’ Dt p a y *  _ _ _ _  _ -  - 

The velocities u and v are defined as mean mass velocities in the x- and y-directions 
respectively. 

Next we consider separately the species constituting the mixture. The con- 
tinuity equation for any species [i] is 

ani a a -+-[ni(u+qz)] +-[ni(v+~u)l  = Ki, 
at ax ay (3.3) 

where ni is the number-density of species [i], Ex and are diffusion velocities of 
this species in the x- and y-directions, and Ki represents the number of molecules 
of species [i] which disappear or are produced per unit of time and volume as a 
consequence of the combustion process. 

The sum of equations (3.3) over all species gives 

where 

an a a - -+ - (nX,) + - (nS,) = XKi, 
at ax aY (3.4) 

(3.5) 

In  reality the gas mixture within the flame has a great many components. 
We idealize this situation by considering a mixture of three species only: fuel, 
oxidizer, and the products of combustion. Thus, symbolically, we have the 
reaction [l] + [2] -+ [3]. We shall adopt subscript [3] for the products of com- 
bustion. With respect to fuel and oxidizer we introduce the following convention: 
one of the species [l] and [2] disappears completely after combustion. We shall 
always denote by [l] the species that disappears in the combustion process. 
Thus, if the mixture is rich [l] will stand for oxygen, if the mixture is lean [I] will 
denote the fuel. 

We consider here the two-dimensional problem. The final results of the present theory 
can, however, easily be extended to  three-dimensional disturbances, as described by 
Eckhaus (1959). 
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The diffusion law for a three component mixture can be written as follows 
~ ) [ ~ ) ~ ( V 2 - V l ) + ~ ) - - ( V 3 - V l )  1 

e ) ( ( " ) L ( V l - V 2 ) + ( % ) L ( V 3 - V 2 )  n DZl D23 

n n D12 D13 

nlml Vl + n2m2V2 + n3m3V3 = 0, (3.8) 

where D, is the binary diffusion coefficient between species [i] and [j], and mi is 
the molecular weight. By definition p = %,mi. 

If we now attempt to eliminate the diffusion velocities from the system of 
equations (3.3), (3.6), (3.7) and (3.8), the resulting differential equations for the 
number densities become non-linear. It appears thus desirable to introduce 
some form of approximation. This has been done by Eckhaus (1959). Omitting 
here the derivation we state the result: in the pre-heat zone, where Ri = 0, the 
approximate laws of diffusion read 

nlV, = --m2Dlzgrad n2 2 +-m,D, m2D12 
P (:) (?)0['--3 

n,V3=-nD3grad - , (3 
1 1 1 

D3 - ( ? ) o ~ + ~ ) o ~ y  
_ -  

where subscript 0 denotes the values at  the upstream boun 

grad - , (3.9) (3 
(3.10) 

(3.11) 

lary of the flame 
front. Using some further approximations concerning the temperature depen- 
dence of the diffusion coefficients (see Eckhaus 1959), the following system of 
equations can be obtained 

a D (--) n1 - D12V2 (2) = - D, (?)o (1 -2) V2 (2). 
(3.12) 

(3.13) 

The above approximate diffusion equations can be interpreted as follows. 
Suppose we start by considering species [l] and [2 ]  as one component [ I ] .  Then 
equation (3.12) describes the binary diffusion between [ I ]  and [3]. Having solved 
this problem we want to find out how the diffusion is distributed between species 
[l] and [3] ,  and this is described by (3.13). 

Proceeding now to the energy equation, in Eckhaus (1959) an approximate 
form is derived, in which the internal degrees of freedom of the molecules are 
neglected, the gas velocities are assumed to be low, and the coefficient of heat 
conductit jty is taken to be a constant. The equation then is 

T = -Q-.$knTCR,, (3.14) 

where h is the coefficient of heat conductivity, k is the Boltzmann constant and 
Q the heat release per unit of volume and time. Also, use has been made of the 

(3.15) gas law in the form P = knT. 
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We must finally specify the combustion mechanism. Here is where the present 
model introduces the most crude approximations. Without more justification 
then, than that the proposed relations are the simplest ones that one can use, 
wetake . 

in the pre-heat zone, Q = 0 ;  K i  = 0 ;  
in the burning zone, the reaction is symbolized by the equation 

al[l l  + a2[21 =+ “ ~ 3 1 ,  

where ai denotes the number of molecules of every component that participates 
in one reaction. 

For the heat production we can then write 

(3.16) 

where q is the amount of heat produced in one reaction. We now define a* to 
be the fraction of n, that participates in the reaction per unit of time. It then 
follows that 

K ,  = -a*nl, K2  = --a * n,, 
“1 

K ,  = + “1 5 a*n,. (3.17) 

I n  order to consider perturbations of the flame structure we introduce a new 
co-ordinate system, attached to  the moving flame front 

c = x - xo(y, t ) ,  7 = y, xo = So(7) euf. (3.18) 

Here xo measures the distance from the instantaneous position of the ignition 
point to its position before disturbance was introduced. Thus 6 = 0 represents the 
ignition point in the new co-ordinate system. We now define the perturbation 
quantities as follows. Let any quantity introduced in this section bef(x, y, t ) .  We 
write 

f ( X ,  y, t )  = +f’(C, 7) e’l, (3.19) 

where f is the steady-state one-dimensional quantity, and f’ is the perturbation; 
v can, of course, be complex. We must transform the equations of this section 
according to (3.18),  introduce the various expressions (3.19),  and linearize the 
equations for the perturbation quantities. Instead of summarizing here all the 
equations obtained in this way, we shall introduce them in the following sections, 
as the need for them arises. 

4. One-dimensional stationary flames 
For the theory of perturbations we shall need some results of the stationary 

one-dimensional flame front. Also, since for stationary one-dimensional flames 
various theories are available, it is interesting to find out what results the present 
simple model gives for this case, and compare them with existing flame formulas. 

We consider first the pre-heat zone. The energy equation becomes 
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The continuity equation (3.4) is 

or nSx = EoTio. 

Thus we introduce the parameter 

and obtain the temperature profile in the pre-heat zone 

T' = To + (Ti - Po) err. (4.5) 

Next we consider the burning zone. We introduce one more approximation: 
we assume that the total number of molecules does not change too much in 
combustion, XKi = 0. We then have, for the energy equation, 

- a F  - 

4 
a, 

= 0, 

Q = -a*?i,. (4.7) 

Result (4.3) still holds in the burning zone. For the continuity equation of 
species [l] we obtain, from (3.3), 

d 
[%JU + V,)]  = -a*%,. (4.8) 

Now, the diffusion process is governed by parameters of the type ,u = U/Dij, 
where p is usually of the same order of magnitude as 7. Our flame model is based 
on the assumption that a*/Ufr > 1, and thus also a*/Uf,u > 1. It follows that 
the distribution of El in the burning zone is mainly governed by the rates of re- 
action, and thus that diffusion can be neglected. 

We also make use of the fact that at low velocities the pressure changes across 
the flame front are negligibly small (see Emmons 1958) so that 5iF is constant. 

Under these conditions El can easily be eliminated from (4.6), (4.7) and (4.8), 
and we obtain 

Integrating over the burning zone we now have 

Equating the slope of the temperature curve at the ignition point t = 0 from 
(4.10) with the solution (4.5) in the pre-heat zone, we obtain 

(4.11) 
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Since T, - Ti is small, the first term between brackets is of the order of magnitude 
Ff-Ti ,  while the second one is of the order re2(Tf-FJ, and consequently, 
much smaller than the first one (re2 N s,/el). Thus, retaining only the dominant 
terms, we have a" Tf  - Pi 

Zf 7- T, - Po - 1, (4.12) 

which is the Mallard-LeChatelier formula (Emmons 1958). 

5. The perturbation of the flame velocity 
As discussed in $ 2, the perturbations produce two kinds of effects on the flame 

structure. There is a change of composition of the mixture, resulting from 
diffusion and convection perturbations, which produces a perturbation of the 
heat release in the burning zone, and thus a perturbation of the final flame 
temperature T,. There are also the convective and curvature effects on the 
heat conduction process, which result in a perturbation of the amount of heat 
needed to raise the temperature in the pre-heat zone to the ignition point. By the 
energy balance, however, this also means a perturbation of the final flame 
temperature. The net effect of both processes is a perturbation T;. 

The perturbation of flame propagation velocity is, in the notation of $3, 
(u' - uZo),, where subscript zero means that the value at the upstream flame 
boundary is taken. It seems reasonable to expect that for small perturbations 
the flame velocity will be proportional to  T; and therefore governed by a formula 
of the type 

where c is some constant which depends on the physical properties of the mixture. 
If we consider the Mallard-LeChatelier relation (4.12) and calculate the 

change of the flame velocity caused by some small change of T,, we find indeed 
a formula of the type (5.1), with c given by 

or, for a*/Zfr 9 1, (5.3) 

In  Eckhaus (1959) it  has been shown that, if the formula for the flame propaga- 
tion velocity is developed from the complete perturbation equations of $3, for 
sufficiently large a*/E,r, the result is indeed given by (5.1) and (5.3). 

In  the present study we shall adopt (5.1) for the flame velocity. Of course, 
any more sophisticated model of the flame structure would lead to a more 
complicated flame velocity formula. It is hoped, however, that even though the 
present model constitutes an over-simplification, the main effects of the per- 
turbations on the flame velocity are reasonably represented by the formula (5.1). 

We are now left with the task of evaluating T; which in the present theory 
summarizes all the effects of flame-structure perturbations. This means that we 
must still consider the complete system of partial differential perturbation 
equations as defined in $3, and construct their solutions. However, the task 
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can be considerably simplified by the following consideration. For stability 
analysis we may assume the ratio of flame thickness to the wavelength of dis- 
turbances to be very small. (In a stationary problem of a slightly curved flame 
front, the ratio of flame thickness to the local radius of curvature will usually be 
very small.) Thus we may attempt to solve the perturbation equations in terms 
of power series of the flame thickness parameters. The procedure is particularly 
simple if only linear terms in flame thickness are retained. The problem can then 
be solved by an integral method, and the final results are not too complicated. 

We consider first the pre-heat zone g < 0. Linear perturbation of the energy 
equation (3.14) gives 

(5.4) 

where use has been made of some results of $4. Similarly, the continuity equa- 
tion (3.4) leads to the perturbation equation 

Finally, since the pressure is approximately constant over the flame region, the 
perturbation of (3.15) leads t o  

n’ T’ 
n 
- - _ _ -  

!F- 
- 

Combining the above equations we have 

We now integrate (5.7) over the pre-heat zone, and, making use of the condition 
that temperature perturbations must disappear at t = -el, we obtain 

1 - - d2Zo 
+-(Ti - To) __ - - --a<. (5 .8 )  

r 

Note that the last term on the right-hand side is of second order in flame thickness, 
and can thus be neglected. 

Consider now the burning zone. Identical derivation leads to 

Since outside the flame region the temperature fluctuations will only be convected 
downstream, we have 

(5.10) 
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Also, we make use of the fact that diffusion velocities must vanish at the flame 
boundaries. Combining (5.8) and (5.9) we then have 

We next compute the perturbation of the heat-release Q'. From (3.3), (3.16) and 
(3.17) we have the linear perturbation equation 

P a a -  
&' = -- a1 (V(r,)'+-[n,(u-vZo+v,.)l.+- a t  a7 [ (n l )v l+ (nlqz)']], (5.12) 

where q can easily be found to  be 
T, - To 

q = TAU,-----. 
( G ) O  

(5.13) 

The total heat-release perturbation is thus 

We can also integrate the continuity equation for species [l] over the pre-heat 
zone to obtain 

[ n l ( u - v z o + ~ 7 , , ) ] ~  = [E,v'+ (n,'V,,)']dt. 

(5.15) 

Combining (5.11), (5.14) and (5.15), and using the integrated form of (5 .5)  we 
find 

e2 T'dt 1 - - dzZ0 
n i d t  + Ff] ==] - 7 (T, - To)  -% dll 

-El  ST 

+ 0(e2 ) .  (5.16) 

T; is expressed by equation (5.16) in terms of integrals over the flame region. 
Since we wish to retain in the expression for T; only linear terms in flame thick- 
ness, it is sufficient to  retain in the integrands only terms independent of the 
flame thickness. Moreover, since e2 4 E, we may neglect the contribution of the 
burning zone to the integrals. 

Consider the tangential momentum equation (3.2). The perturbation equa- 
tion, when integrated from 5 = -el to an arbitrary point inside the flame region, 
gives 

(5.17) 
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Similarly, for the tangential diffusion velocities, we find from (3.9) and (3.10) 

(5.18) 

The magnitude a follows from the stationary form of (3.3): 
- 
n.V 2 %  = (F),-G. (5.19) 

Introducing these results into (5.16) and using (5,1), we finally obtain 

+ O(e2). (5.20) 

Thus for the evaluation of the flame-velocity perturbation we need for the 
first group of terms the solutions of the perturbation diffusion and heat-conduc- 
tion problems. However, we can neglect in these solutions terms of the order of 
magnitude of the flame thickness. For the evaluation of the second group of 
terms we need only the solutions of the stationary one-dimensional flame 
structure. 

6. The diffusion problem 
Solution of the diffusion equations (3.12) and (3.13) is a straightforward pro- 

cedure which has been performed in some detail in Eckhaus (1959). Omitting 
here the calculations, we shall state the results. 

Introduce the following diffusion parameters 

The solution of the one-dimensional steady-state problem is then 

where (n3/n)f is the relative concentration of the products of combustion in the 
burned gas. 

For the perturbation problem we find that 
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7. The heat-conduction problem 
The stationary one-dimensional solution (4 .5)  we have found already. The 

perturbation problem is somewhat more complicated. We have a coupled system 
of equations, (5.4) and (5.5). Eliminating terms involving Sk we can write the 
governing equation in the form 

(7.2) 

The relative order of magnitude of the various terms can be analysed by the 
transformation c* = 76. We then have 

(7.4) 

We are looking for some form of expansion of T' in terms of the inverse powers 
of 7 (the flame-thickness parameter), and, as discussed in $ 5 ,  it is sufficient 
for the present purpose to evaluate only the term of T' which is independent of 7. 
This suggests that we should neglect directly in (7.3) and (7.4) all terms of order 
7-1 and 7 ~ ~ .  The resulting equation is a very simple one, but unfortunately it 
does not lead to correct results. If we solve it, and consider the solution as a 
first step in an iteration process, we find that the next approximation to T', 
which is of the order 7-1, does not satisfy the boundary condition that T' should 
vanish in the vicinity of the outer flame boundary. A more careful approach is 
thus needed. We must consider a more complete form of (7.3) and (7.4), con- 
struct a solution with a proper behaviour, and evaluate the term of T' that is 
of interest as a limit of the solution for 7 --f a. 

Consider now the equation 

This may seem a somewhat inconsistent approximation, since in (7.3) we have 
retained terms of the order 7-l, while in the definition (7.4) of R([*) we have 
neglected them. However, B(E*), which is the forcing function of the problem, is 
not responsible for the behaviour of the solution. If more terms of B([*) are 
retained, they prove to contribute only to the labour; in the final results their 
contribution can be neglected. In the present presentation they have therefore 
already been neglected at the outset. 

Introduce now a new unknown function 

( T - p o )  (T*- 1). 
V 
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Equation (7.5) then becomes 

The most convenient form can be obtained by putting 

T* = e"t'G(c*), cr = 

and transforming the co-ordinates by 
rii 

We then obtain 

1 
z = =. 

To 
(7.9) 

(7.10) 

which is the standard form of the hypergeometric equation. From Erdelyi 
(1953) we find the two independent solutions 

G(x) = V1P[g, C; 20.+ 2; 1-21 + V ~ Z  2P[cr + 2,  cr + 2;  3 ;  XI, (7.11) 

where P is the hypergeometric function. We apply now the boundary condition 
that the temperature perturbation must vanish near the outer flame boundary; 
thus T' + 0 when z + 1. 

Investigation of the behaviour of the two hypergeometric functions shows that 
the condition can only be satisfied if V2 = 0. To determine V, we need a boundary 
condition at the ignition point, where we can have a perturbation of the ignition 
temperature Ti. But since the ignition temperature is a fictitious magnitude, it 
is difficult to postulate a condition for its perturbation. In  fact, this is one of the 
points in which the over-simplification of the flame model brings the theory into 
trouble. We may, however, reason as follows. Physically, the ignition tempera- 
ture represents an approximation of the fact that rates of reaction are very 
low at low temperature and increase rapidly at a sufficiently high temperature. 
Therefore the question is really whether the perturbations of the flame structure 
influence rates of reaction so that, in comparison with unperturbed conditions, 
this rapid rise takes place at a somewhat different temperature. For a thermally 
propagating flame there seems to be not much reason for effects of this kind. We 
shall therefore assume that Ti = 0. With this, somewhat speculative, boundary 
condition, we find that 

1 _ -  -P[a,cr;2cr+2;1-z,i], 2. ==. 
g1 To 

(7.12) 

The temperature distribution in the pre-heat zone is now completely specified. 

8. Final results of the flame propagation velocity 
The results of $$6 and 7 must now be substituted into (5.20) and the integrals 

must be evaluated. Also, the integrals involving T' must be expanded in terms 
of inverse powers of r .  The necessary calculations have been performed in detail 
by Eckhaus (1959). We shall here summarize the results. 
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The perturbation formula for the flame propagation velocity is 

up - uz ur - uzo 1 a ui d3 
(To)o = -c{$ (7). A , + - -  r a y  (u z + d  J0 A ,  1 +O(€,) .  (8.1) 

The coefficients A ,  and A ,  can be written as follows 

(8.2) 

Here, r denotes the ratio of the final flame temperature to the temperature of the 
unburned mixture; thus _ _  

r = Tf/To. 
Furthermore, 

where 
Finally, 

(8.3) 

3r -1  2 3 1 "  ( r  - 1)- . (8.5) h7 +-ln(r--)+In 
3 - 4  r r 

The various diffusion and heat-conduction parameters have been defined in 
994, 6 and 7. 

The flame-velocity formula (8.1) is the final result of the present theory. It 
shows that there is a perturbation of the flame velocity due to acceleration of the 
flame front and a perturbation due to curvature effects. The particular combina- 
tion 

(211 + u %) 
0 

that occurs in the curvature term permits a direct interpretation: it is the com- 
ponent of the velocity of fluid relative to the flame front, that is tangential to the 
instantaneous flame position. This interpretation leads to some interesting 
observations. Consider a flame front of circular shape. If the radius is large 
compared with the flame thickness, we can apply the present theory locally at  
every point of the flame. Since the fluid motion is in this case strictly in the 
radial direction, it is easily found that 

(di.212) = o  
0 

at every point of the flame, and thus, that up to  the first order in flame thickness 
there is no effect whatever of the curvature of the flame on its propagation 
velocity. 

Now, real flames are almost never two-dimensional. Fortunately, however, 
an extension of the present theory to three dimensions is almost trivial. As dis- 
cussed in Eckhaus (1959), it  is easily found that the effects of curvature are 
additive. Thus, if 6 is the third space direction (in a Cartesian co-ordinate system 
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in which the 5- 7 plane is tangential to the flame front at the point that we con- 
sider) and if w is the fluid velocity in the c-direction, the extension of (8.1) to 
three dimensions is 

(8.6) 

It follows now that for a spherical flame front there will be no effects of curvature 
on the flame velocity. 

Consider finally the flame on a Bunsen-burner, which is nearly conical in shape. 
If we apply (8.6) at an arbitrary point of the flame, we find that the curvature, 
caused by the rotational symmetry of the flame, has no effect on the propagation 
velocity. The only effect that arises is that due to curvature in the meridian plane. 
Since this curvature is extremely small, except in the tip-region, the total effect 
of curvature for a Bunsen-burner flame will be extremely small. 

The above holds for the spherical flame front quite independently of the 
magnitude of the constant c. For the Bunsen-burner flame i t  holds for values of 
c up to say c = O(r).  It follows that c can be quite large, and yet its effect will 
not be felt in most experimental arrangements. 

It is somewhat unfortunate for the present theory that the constant c of (8.1) 
and (8.6) cannot be exactly determined. It is true that in $5 we have found an 
approximate expression (5.3) for c. However, not much is gained by expressing 
c in terms of a*, since this last quantity is a hypothetical constant rate of reaction 
which cannot easily be correlated with the true physical properties of the 
mixture. To be realistic we must accept that the present model of combustion 
does not determine the constant c. From Q 5 we can conclude only that c is posi- 
tive, and that it can be large if the ratio of thickness of the burning zone to that 
of the pre-heat zone is sufficiently small (which is the basic postulate of our model). 

9. Application to the problem of stability 

disturbance be sinusoidal in the 7-direction: thus 
We shall now consider the stability of a plane flame front. Let the initial 

zo = <,COS ( 7 7 ) .  

We recall that, according to $ 3  we have 

Zo(Y, t )  = S ( 7 )  ev6, (9.2) 

where xo is the instantaneous distance from the flame front to its undisturbed 
position. 

For the stability analysis, solutions of the fluid perturbation velocities in the 
two regions ahead and behind the flame front are needed, together with boundary 
conditions at the flame front. These last ones are supplied by the requirement 
that mass and momentum of the fluid are preserved when passing through the 
flame front. Details of the derivation can be found elsewhere (Eckhaus 1959; 
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Emmons 1958). The results for the fluid velocities at the upstream flame boundary 

r + l  
are r?) = - - { w z - + 2 w -  '50 ( r -  1)) ?cos(?q), (9.3) 

2(r+w) r 

where 

When Landau's hypothesis-that the flame velocity is not affected by the per- 
turbations-is applied, we must put (9.3) equal to zero. 

In  the present case we introduce (8.1) for the flame velocity and after elimina- 
tion obtain 

r + l  c C r -1  
~ A + w2 r* + ~ ( 2A, + w3 

A,)]  r 27r.b r 2n-lr 

We shall now investigate conditions for stability. If the flame is to be stable, 
the real parts of all roots of (9.5) must be negative. This puts requirements on 
the coefficients of (9.5). For stability we must have 

It can easily be shown that the inequalities can be satisfied if and only if A ,  and 
A ,  are ofthe same sign. Using definitions (3.2) and remarking that K ,  is a positive 
number, we arrive at a necessary (though not sufficient) condition for existence 

r 
r - 1  

of stable solutions 
-R3 2 ( K ,  +R,) 2 0. (9.9) 

Condition (9.9) does not depend on the parameter Zr, which is the ratio of wave- 
length of disturbance to thickness of the flame front, but only on the properties 
of the mixture that is being burned. I f  the mixture is such that condition (9.9) 
is not satisfied, the flame will be unstable to all disturbances. If, however, the 
mixture satisfies condition (9.9) there may be stable and unstable regions, de- 
pending on the wavelength of the disturbances. For the flame to be stable we find 
then that the wavelength must satisfy the following conditions 

(9.11) 

7 Fluid Moch. 10 



98 W.  Ec khaus 

If the mixture is such that K, < ( (3 r -  l)/r) (K,+K,), then condition (9.11) is 
trivial and all wavelengths smaller than the value given by (9.10) are stable. If, 
however, K3 > ( (3r  - l)/r) ( K ,  + K,) a second region of instability will occur at 
small wavelengths. For sufficiently small ( K ,  + K,) the two regions may overlap, 
so that, after all, the flame will be unstable for all wavelengths. 

We shall now illustrate the above discussion with some numerical examples. 
I n  order to evaluate K,, K,, and K,, various parameters describing the physical 
properties of the mixture must be known. In  the following we shall use a range 
of values of these parameters, which on the basis of data of Hirschfelder et al. 
(1954) are estimated to be reasonably likely to occur. It should be stressed that 
the examples are intended as an illustration of the various situations which can 
occur, rather than study of some particular fuel-oxidizer mixture. 

We take in the present examples 7 = l00cm-l and r = 5. For a range of 
values of p,, we then find the following : 

Y J ~  1.5 2.0 3.0 4.0 
Kl 0.88 1.25 1.56 1.70 

Consider now K,. Its value depends on 7 as well as on various coefficients of 
diffusion. If we write it in the form 

(9.12) 

then R2 is a function of p1/7 and ,u3/,u1. For this last parameter we write, according 
to definitions (6.1), 

where D,, is the binary diffusion coefficient for the fuel-oxygen diffusion and 
D, is the effective diffusion coefficient for the diffusion of products of combustion 
into the unburned mixture. In  general, the mean molecular weight of the pro- 
ducts of combustion will be about the same as that of oxygen, while the mean 
molecular weight of the combustible mixture will be higher than that of oxygen. 
From the behaviour of the coefficients of diffusion with respect to molecular 
weight we then conclude that 

%< 1. 
D3 

For some representative values we find the following : 

D12iD3 = ?$ D12lD3 = B 
---L-- 7 -*-- 7 

411.17 1.5 2.0 3.0 2.0 3-0 
K ,  2.62 1-80 0.94 2-50 1.40 

Finally, the coefficient K ,  is a function only of T ,  and for r = 5 its value is 
AT3 = 1.54. 

We consider now alean mixture. According to $3, the meanings of the diffusion 
coefficients are in this case 

D,, = diffusion of fuel in oxygen, 
D,, = diffusion of fuel in the products of combustion. 
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, But since the molecular weights of oxygen and the products of combustion are 
not too different, we conclude that 

D,, = 1, 
Dl, 

which means that K ,  is very small. Applying now the stability conditions we find 
that the flame is stable if the wavelength of disturbance is smaller than the value 
given in the following table : 

Yl lT 1.5 2.0 3.0 4.0 
I in cm 0.15~ 0 . 2 2 ~  0 . 2 8 ~  0 . 3 0 ~  

We turn now to the rich mixture. Here the meaning of the symbols is 
D,, = diffusion of oxygen in fuel, 
D,, = diffusion of oxygen in the products of combustion, 

from which follows that 

% < 1 andthus K ,  < 0. 
Dl3 

Choosing D,,/D13 = 0.55, and also taking (n,/n)f = 0.9, we now find the following 
behaviour : 

p1/r 

2.0 Stable for O.Olc< la 0 . 0 9 ~  Unstable for all wavelengths 
3.0 Stable for I <  0 . 2 0 ~  Stable for I < 0 . 1 7 ~  

If we now consider some specific fuel and oxidizer and wish to compare the 
behaviour of the flame, for lean and rich mixtures, then p1/7 is approximately the 
same for both cases, so that we must compare the above results for a fixed 
value of this parameter. It is clear, then, that a situation can easily arise in which 
the lean and the rich flames will behave very differently. For instance, for 
p1/7 up to 2.0, the lean flames will have a range of stable wavelengths, while the 
rich flames will be unstable to practically all wavelengths. 

The stability boundary for lean flames (and for rich flames, if there is one) 
still depends on the proportionality constant c. According to our combustion 
model there is some reason to believe that c will be large. If, for instance, c = 10, 
we find the stability boundary for lean flames at wavelengths of 2 to 3cm. 
However, no matter how large c is, according to the present results, instability 
will always occur at sufficiently large wavelengths. This seems to be in disagree- 
ment with Markstein’s observations; but at  this point we must realize that the 
theory assumes the flame to be of infinite extent, or, what is more realistic, that 
the wavelength of disturbance is assumed to be small compared with the dimen- 
sions of the flame container. In  Markstein’s experiments the flame was con- 
tained in a circular tube of 10 cm diameter. Most probably, for wavelengths of 
2 to 3 cm, wall effects can no longer be neglected. Markstein observed that the 
overall appearance of the cellular flames was different at different wall tempera- 
tures, which suggests that the wall effects can be very important. 

It should finally be remarked that for large wavelengths gravitational effects 
must be taken into account. 

Behaviour for D,,/D, = 3 Behaviour for D,,/D, = + 
1.5 Unstable for all wavelengths - 

7-2 
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10. Conclusions 
We have seen in the last section that application of the present theory to the 

problem of stability leads to  results which can be interpreted to be in qualitative 
agreement with the experimentally observed behaviour. Therefore it appears 
that the essential features of the phenomena have been retained to some degree, 
in spite of the over-simplification of the theory. 

An improvement of the theory can presumably be achieved by introducing a 
more correct model of the flame structure. The present method of integrating the 
equations will then probably still be useful. However, if the model is more com- 
plex, the increase of labour can be very large. Moreover, progress in this direction 
is made difficult because of the absence, at present, of a definite theory for one- 
dimensional, stationary flame propagation. This makes the choice of the model 
for the perturbation theory almost a matter of taste. As we have already re- 
marked, the present theory can be considered to  be a counterpart of the simplest 
available stationary one-dimensional theory. It cannot be expected to provide 
all the answers; it may even be incorrect at some points. It will, however, serve 
its purpose if it  does provide the first step in a correct direction. 

This paper is a condensed and somewhat revised version of Eckhaus (1959), 
which was a part of the author’s doctoral thesis at the Massachusetts Institute 
of Technology, Department of Aeronautics and Astronautics. The author 
wishes to acknowledge gratefully the encouragement and advice that he received 
from Professor Leon Trilling. He is also indebted to Prof. Howard W. Emmons, 
of Harvard University, for discussions which helped to clarify numerous points 
of this work. The work was sponsored by United States Air Force Contract 
no. AF 49(638)-160. 
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